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1 Description of the detailed Cyanobacterial model

To describe the full model, we list all of the reactions in Network (S1). Consistent with the main
text, we consider KaiC proteins in four states: unphosphorylated KaiC (denoted by U), S431
phosphorylated KaiC (denoted by S), T432 phosphorylated KaiC (denoted by T ), and double
phosphorylated KaiC (denoted by ST ). The notation for the KaiBC complexes are then B · U ,
B · S, B · T , and B · ST . See Table S1 for a detailed description of the parameters.
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The reactions in the detailed model are:

U + A
kf1−−→ AU, U

kb1←−− AU
kcat−−→ T

T + A
kf2−−→ AT, T

kb2←−− AT
kcat−−→ ST

U
kps−−→ T

kps−−→ ST

U + B
kon

1−−⇀↽−−
koff

1

B ·U, S + B
kon

2−−⇀↽−−
koff

2

B · S, ST + B
kon

3−−⇀↽−−
koff

3

B · ST

B · ST
kdps−−→ B · S kdps−−→ B ·U

ST
kdps−−→ S

kdps−−→ U

ST
kdps−−→ T

kdps−−→ U.

(S1)

The corresponding mass actions equations are:

d[U ]

dt
= kb1[AU ]− kf1 [A][U ] + koff1 [BU ]− kon1 [U ][B]− kps[U ] + kdps([S] + [T ]), (S1)

d[AU ]

dt
= kf1 [A][U ]− (kcat + kb1)[AU ], (S2)

d[T ]

dt
= kcat[AU ] + kb2[AT ] + kps([U ]− [T ])− kf2 [A][T ] + kdps([ST ]− [T ]), (S3)

d[AT ]

dt
= kf2 [A][T ]− kb2[AT ]− kcat[AT ], (S4)

d[ST ]

dt
= kps[T ] + koff3 [BST ]− kon3 [ST ][B] + kcat[AT ]− kdps[ST ], (S5)

d[BST ]

dt
= −kdps[BST ]− koff3 [BST ] + kon3 [ST ][B], (S6)

d[BS]

dt
= kdps[BST ]− koff2 [BS] + kon2 [S][B]− kdps[BS], (S7)

d[BU ]

dt
= kdps[BS]− koff1 [BU ] + kon1 [U ][B]. (S8)

The KaiBC complex sequesters KaiA when the S site is phosphorylated on KaiC (BS and BST ),
where n = 2 indicates the strength of sequestration.

[B] = [B]T − [BU ]− [BS]− [BST ] (S9)

[A] = max{0, [A]T − n · ([BST ] + [BS])− ([AU ] + [AT ])} n = 2 (S10)

To study the stability of our model under ATP variations, we adopt the competitive inhibition
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Figure S1: Simulation of the detailed model. Oscillations of KaiA (Yellow), KaiBC complexes
in different stages (Blue and Magenta) along with the overall phosphorylation level (Black). The
proportion of phosphorylated KaiC oscillates roughly between 73% and 25% on a circadian period.
KaiA is mostly sequestered by KaiBC complexes (mainly by B-S) except for a short phase, which
correspond to a rapid rise in the phosphorylation level. See Table S1 for detailed description of the
parameters.
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among ATP, ADP, and KaiC as in [12].

kps =
[ATP ]

[ATP ] +KI [ADP ]
k0ps (S11)

kcat =
[ATP ]

[ATP ] +KI [ADP ]
k0cat (S12)

Here, the parameters k0ps and k0cat are the constant rates under 100% ATP, and KI is the strength
of the inhibition from ADP. Simulations of the model under various [ATP]/([ATP]+[ADP]) ratios
show that the cyanobacterial clock is robust to ATP variations (Figure 2E-F, main text), which is
consistent with previous experimental results [12].

2 Bifurcation analysis and stochastic simulations

Next, we generate a bifurcation diagram for the detailed model using XPP-AUTO. Our bifurcation
diagram is similar to that in [13]. In particular, oscillations occur when the ratio between the
concentration of KaiA and KaiC is within a bounded range while the relative concentration of
KaiB has little effect on whether there are oscillations (Figure S2).

We also simulated our model with the Gillespie algorithm (kinetic Monte Carlo). By keeping the
KaiC total concentration a constant CT = 1µM , the number of KaiC molecules is directly related
to the total volume in our simulation. We simulate the discrete model for various CT and compare
the corresponding phosphorylation levels of KaiC (Figure S3). When the number of molecules is
low (CT = 10, 20, 50), the trajectory exhibits randomness without any sustained oscillations (Figure
S3). As the number of KaiC molecules increases, however, the corresponding oscillations become
more stable. When the number of molecules CT becomes large enough, the general shape of the
profile stays almost the same even if the number is doubled from CT = 5000 to CT = 10000. The
amplitude of the oscillations from stochastic simulations approaches that of the deterministic model
as the number of molecules increases. Moreover, the phase difference between the stochastic and
deterministic simulations decreases significantly as the number of molecules increases. Therefore,
we predict that to observe stable and synchronized oscillations, the total amount of KaiC proteins
must be above a certain threshold.

3 Linear stability analysis of the core model

Here, we present a linear stability analysis of the simplified model. We continue to use [T ], [ST ],
and [S] as the state variables for KaiC concentrations in various phosphorylation states, and the
variable [A] for the concentration of KaiA. Constants CT and AT indicate the total amount of the
KaiC and KaiA proteins, respectively, and Kd is the dissociation constant in the sequestration of
KaiA through KaiC-S. We assume that sequestration happens on a faster timescale, thus reaching
equilibrium quickly. Due to the two time scales and the binding of KaiA having no impact on other
reactions of S, we solve for the concentration of free KaiA.
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Figure S2: Two parameter bifurcation diagram of the KaiC system.. The parameter atoc
is the fraction of KaiA concentration to KaiC concentration. The parameter btoc is the fraction of
KaiB concentration to KaiC concentration. Points within the region enclosed by the blue curve give
initial distributions that produce oscillations while we expect no oscillations outside this region.

[Sfree] = Kd[AS]

=⇒ (AT − [AS])([S]− [AS]) = Kd[AS]

=⇒ [AS] =
(
AT + [S] +Kd −

√
(AT + [S] +Kd)2 − 4AT [S]

)
/2

=⇒ [A] = AT − [AS] =
(
AT − [S]−Kd +

√
(AT − [S]−Kd)2 + 4KdAT

)
/2.

(S13)

First, we reduce the number of variables by applying the following conservation law

[U ] = CT − [T ]− [ST ]− [S]. (S14)

After applying Equation (S14), the core model reduces to the following set of equations.

d[T ]

dt
= k1[A](CT − [T ]− [ST ]− [S])− k2[T ] (S15)

d[ST ]

dt
= k2[T ]− k3[ST ] (S16)

d[S]

dt
= k3[ST ]− k4[S] (S17)

[A] =
(
AT − [S]−Kd +

√
(AT − [S]−Kd)2 + 4KdAT

)
/2. (S18)

Kd must be small enough for the system to generate sustainable oscillations. Therefore, since
Kd << AT , we take the limit as Kd → 0 in [A] to get an approximate expression [A] = max{AT −
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Figure S3: Stochastic simulations of the detailed model. (A) Trajectories from stochastic
simulations for various levels of total KaiC molecules are compared side by side. The horizontal
axis of all plots are ‘time (h)’ while the vertical axis shows the relative phosphorylation level of
KaiC protein. CT = 10, 20, 50, 100, 500, 1000, 5000, and 10000. (B) Trajectories from stochastic
simulations for various levels of total KaiC molecules compared with the deterministic simulation
of the detailed model. CT = 500, 1000, 5000, and 50000.
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[S], 0}. Then, Equations (S15)-(S18) reduce to:

d[T ]

dt
= k1(AT − [S])(CT − [T ]− [ST ]− [S])− k2[T ] (S19)

d[ST ]

dt
= k2[T ]− k3[ST ] (S20)

d[S]

dt
= k3[ST ]− k4[S]. (S21)

Solving the above system for the equilibrium solutions, we obtain [ST ] =
k4
k3

[S] and [T ] =
k4
k2

[S]

from Equation (S20) and Equation (S21), respectively. Solving for the equilibrium solution of
Equation (S19), we obtain a quadratic in terms of [S]:

k1(AT − [S])(CT − (1 +
k4
k2

+
k4
k3

)[S])− k4[S] = 0. (S22)

Additionally, we assume k4 << k1 since KaiA-enhanced phosphorylation is much faster than
(auto)phosphorylation. Hence, we drop the last term in Equation (S22). After dividing k1 through
all terms, we find two steady state solutions:

(AT − [S])(CT − (1 +
k4
k2

+
k4
k3

)[S])− k4
k1

[S] = 0 (S23)

=⇒ (AT − [S])(CT − (1 +
k4
k2

+
k4
k3

)[S]) = 0 (S24)

=⇒ [S]∗ = AT and [S]∗ =
CT

1 + r
, where r =

k4
k2

+
k4
k3
. (S25)

Next, we compute the Jacobian at the equilibrium [S]∗ = AT :

J1 =

−k2 0 −k1(CT − (1 + r)AT )
k2 −k3 0
0 k3 −k4

 .
The characteristic function of the Jacobian, J1, is then:

p1(λ) = (λ+ k2)(λ+ k3)(λ+ k4) + k1k2k3(CT − (1 + r)AT ). (S26)

From the secant condition [40], we conclude that oscillations occur when

k1k2k3(CT − (1 + r)AT )

k2k3k4
≥ (sec(

π

3
))3 (S27)

CT − (1 + r)AT ≥
8k4
k1

. (S28)

In the main text, we write condition (S28) as CT − (1 + r)AT ≥ ε, where r = k4
k2

+ k4
k3

and ε = 8k4
k1

.
To verify our analysis, we simulate the model for k2 = k3 = k4 = 0.1 and compare our results with
CT − 3AT >

.8
k1
.
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Next, we analyze the Jacobian matrix at the other equilibrium [S]∗ = CT
3 . Without introducing

too many computational details, we assume that k2 = k3 = k4, which means that autodephospho-
rylation and autophosphorylation of KaiC are on the same time scale.

The Jacobian of [S]∗ = CT
3 is:

J2 =

−k1(AT − CT
3 )− k2 −k1(AT − CT

3 ) −k1(AT − CT
3 )

k2 −k2 0
0 k2 −k2

 .
The characteristic polynomial of the Jacobian, J2, is a cubic function:

p2(λ) = (b+ k2 + λ)(k2 + λ)2 + bk2(k2 + λ) + bk22

= (λ+ k2)
3 + b(k2 + λ)2 + bk2(k2 + λ) + bk22

= λ3 + (3k2 + b)λ2 + (3k22 + 3bk2)λ+ k32 + 3bk22,

(S29)

where b = k1(AT − CT
3 ) > 0.

The Routh-Hurwitz Stability Criterion [41] states that a necessary condition for a cubic function
h(x) = x3 + a2x

2 + a1x+ a0 to be stable (i.e., all roots have negative real part) is a0 > 0, a2 > 0,
and a2a1 > a0.

Applying the criterion to Equation (S29), we have a0 > 0 and a2 > 0. We check the third condition
accordingly:

a1a2 − a0 = (3k2 + b)(3k22 + 3bk2)− k32 − 3bk22

=⇒ a1a2 − a0
k2

= (3k2 + b)(3k2 + 3b)− k22 − 3bk2

= 8k22 + 9bk2 + 3b2 > 0, for all b, k2 > 0.

(S30)

Thus, we know that all three roots of the characteristic function always have negative real parts,
implying that the steady state is stable. Therefore, there are no oscillations around the steady
state [S]∗ = CT

3 .

To conclude, we found a necessary condition for the system to generate oscillations, which we also
verified by simulations.
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A

Description Symbol Value

Binding rate between KaiA and unphosphorylated KaiC (U) kf1 20.73 /µMhr

Binding rate between KaiA and T-phosphorylated KaiC kf2 87.59 /µMhr

Unbinding rate between KaiA and unphosphorylated KaiC (U) kb1 3.338 /hr
Unbinding rate between KaiA and T -phosphorylated KaiC (T ) kb2 6.113 /hr

Binding rate between KaiB and unphosphorylated KaiC (U) kon1 11.50 /µMhr
Binding rate between KaiB and KaiC-S kon2 66.79 /µMhr
Binding rate between KaiA and doubly-phosphorylated KaiC (ST ) kon3 7.18 /µMhr

Unbinding rate between KaiB and unphosphorylated KaiC (U) koff1 10.72 /hr

Unbinding rate between KaiB and KaiC-S koff2 12.32 /hr

Unbinding rate between KaiA and doubly-phosphorylated KaiC (ST ) koff3 13.59 /hr

KaiA-enhanced phosphorylated of KaiC kcat 28.15 /hr
KaiC autophosphorylation rate kps .0384 /hr
KaiC autodephosphorylation rate kdps .1270 /hr

Total KaiC concentration CT 1 µM
Total KaiA concentration AT 1.0401 µM
Total KaiB concentration BT 1.3468 µM

B

Description Symbol Value

Phosphorylation rate from T to ST k2 .1/hr
Dephosphorylation rate from ST to S k3 .1/hr
Dephosphorylation rate from S to U k4 .1 /hr
Transcription rate (constitutive) Vtrsp .05 µM/hr
KaiC degradation rate Vd .05 /hr
mRNA degradation rate Vm .1 /hr
Adjustment parameter K0 1 µM

Parameters perturbed for robustness Symbol Range
KaiA-enhaned phosphorylation rate of unphosphorylated U to T k1 0.1 ∼ 25/µMhr
Dissociation between KaiA and S Kd 10−4 ∼ 10−1µM
Total KaiC concentration CT 0.01 ∼ 30µM
Total KaiA concentration AT 0.01 ∼ 10µM
Translation rate Ks 0.01 ∼ 10/hr

Table S1: Description of parameters used in simulations for (A) the detailed mathematical model
and (B) the core, TTFL, and PTR models.
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4 Derivation of the repression function in the novel phospholock
model

From Figure 4A in the main text, we have the following reaction network.

A + R
k1f−−⇀↽−−
k1r

AR

AR
k2f−−⇀↽−−
k2r

ARp

ARp
k3−−→ A + Rp

(S31)

Network (S31) generates the following system of ODEs.

dA

dt
= k1rAR + k3ARp− k1f [A][R]

dAR

dt
= k1f [A][R] + k2rARp− (k1r + k2f )AR

dARp

dt
= k2fAR− (k2r + k3)ARp

(S32)

System (S32) generates the following steady-state equations.

k1rAR + k3ARp = k1f [A][R] (S33)

k1f [A][R] + k2rARp = (k1r + k2f )AR (S34)

k2fAR = (k2r + k3)ARp (S35)

Additionally, we have the following two conservation laws in total activator and total repressor
concentrations.

AT = A + AR + ARp (S36)

RT = R + AR + ARp, (S37)

where AT denotes the total concentration of A and RT denotes the total concentration of R.

Using Eqn. (S35), we get

ARp =
k2f

k2r + k3
AR. (S38)

Combining the conservation law (S36) with Eqn. (S38), we get an updated conservation laws

AT = A +

(
1 +

k2f
k2r + k3

)
AR (S39)

RT = R +

(
1 +

k2f
k2r + k3

)
AR. (S40)
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Moreover, substituting ARp based on Eqn. (S35) into the steady-state equation (S33) gives

k1rAR +
k2fk3
k2r + k3

AR = k1f [A][R],

or (
Kd +

k2fk3
k1f (k2r + k3)

)
AR = [A][R]. (S41)

For simplification, we set

K̃1 := 1 +
k2f

k2r + k3
, (S42)

and

K̃2 := Kd +
k2fk3

k1f (k2r + k3)
. (S43)

Then, we can rewrite the conservation laws as

A = AT − K̃1AR (S44)

R = RT − K̃1AR. (S45)

Substituting the conservation laws (S44) and (S45) into Eqn. (S41) gives the quadratic equation

K̃2AR = (AT − K̃1AR)(RT − K̃1AR). (S46)

Expanding out Eqn. (S46) gives

ATRT − (K̃1AT + K̃1RT + K̃2)AR + K̃2
1AR2 = 0. (S47)

The solution of Eqn. (S47) is

AR =
K̃1AT + K̃1RT + K̃2 ±

√
(K̃1AT + K̃1RT + K̃2)2 − 4K̃2

1ATRT

2K̃2
1

.

We take the negative solution above to get that

AR =
K̃1AT + K̃1RT + K̃2 −

√
(K̃1AT + K̃1RT + K̃2)2 − 4K̃2

1ATRT

2K̃2
1

. (S48)

Finally, we replace the solution for AR in Eqn. (S48) into the conservation law (S44) to get the
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concentration of free activator.

A = AT − K̃1AR

=⇒ A = AT −
K̃1AT + K̃1RT + K̃2 −

√
(K̃1AT + K̃1RT + K̃2)2 − 4K̃2

1ATRT

2K̃1

=⇒ A =
2K̃1AT

2K̃1

−
K̃1AT + K̃1RT + K̃2 −

√
(K̃1AT + K̃1RT + K̃2)2 − 4K̃2

1ATRT

2K̃1

=⇒ A =
K̃1AT − K̃1RT − K̃2 +

√
(K̃1AT + K̃1RT + K̃2)2 − 4K̃2

1ATRT

2K̃1

.

In the main text, we replace RT with R as done previously [14, 16].

5 Derivation of the repression function in the adjusted phospho-
lock model with activator phosphorylation

From Figure 4D in the main text, we have the following reaction network.

A + R
k1f−−⇀↽−−
k1r

AR

AR
k2f−−⇀↽−−
k2r

ApRp

ApRp
k3−−→ Ap + Rp

Ap
k4r−−⇀↽−−
k4f

A.

(S49)

Network (S49) generates the following system of ODEs.

dA

dt
= k1rAR + k4rAp− k1f [A][R]− k4fA

dAR

dt
= k1f [A][R] + k2rApRp− (k1r + k2f )AR

dApRp

dt
= k2fAR− (k2r + k3)ApRp

dAp

dt
= k3ApRp + k4fA− k4rAp

(S50)

System (S50) generates the following steady-state equations.

k1rAR + k4rAp = k1f [A][R] + k4fA (S51)

k1f [A][R] + k2rApRp = (k1r + k2f )AR (S52)

k2fAR = (k2r + k3)ApRp (S53)

k3ApRp + k4fA = k4rAp (S54)
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Additionally, we have the following two conservation laws in total activator and total repressor
concentrations.

AT = A + AR + ApRp + Ap (S55)

RT = R + AR + ApRp, (S56)

where AT denotes the total concentration of A and RT denotes the total concentration of R.

Using Eqn. (S53), we get

AR =
k2f

k2r + k3
ApRp. (S57)

Moreover, Eqn. (S54) gives

Ap =
k3
k4r

ApRp +
k4f
k4r

A

=⇒ Ap =
k2fk3

k4r(k2r + k3)
AR + k4A,

(S58)

where k4 :=
k4f

k4r
.

Next, combining the conservation law (S55) with Eqns. (S57) and (S58) gives updated conservation
laws

AT = (1 + k4)A +

(
1 +

k2f
k2r + k3

+
k2fk3

k4r(k2r + k3)

)
AR (S59)

RT = R + K̃1AR, (S60)

where K̃1 is defined as in (S42).

Moreover, substituting Ap based on Eqn. (S58) into the steady-state equation (S51) gives

K̃2AR = [A][R], (S61)

where K̃2 is defined as in (S43). For simplification, we set

K̃3 := K̃1 +
k2fk3

k4r(k2r + k3)
. (S62)

Then, we can rewrite the conservation laws as

(1 + k4)A = AT − K̃3AR (S63)

R = RT − K̃1AR. (S64)

Substituting the conservation laws (S63) and (S64) into Eqn. (S61) gives the quadratic equation

K̃2AR =
(AT − K̃3AR)(RT − K̃1AR)

1 + k4
. (S65)
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Expanding out Eqn. (S65) gives

ATRT − (K̃1AT + K̃3RT + K̃2(1 + k4))AR + K̃1K̃3AR2 = 0. (S66)

The solution of Eqn. (S66) is

AR =
K̃1AT + K̃3RT + K̃2(1 + k4)±

√
(K̃1AT + K̃3RT + K̃2(1 + k4))2 − 4K̃1K̃3ATRT

2K̃1K̃3

.

We take the negative solution above to get that

AR =
K̃1AT + K̃3RT + K̃2(1 + k4)−

√
(K̃1AT + K̃3RT + K̃2(1 + k4))2 − 4K̃1K̃3ATRT

2K̃1K̃3

. (S67)

Finally, we replace the solution for AR in Eqn. (S67) into the conservation law (S63) to get the
concentration of free activator.

(1 + k4)A = AT − K̃3AR

=⇒ (1 + k4)A = AT −
K̃1AT + K̃3RT + K̃2(1 + k4)−

√
(K̃1AT + K̃3RT + K̃2(1 + k4))2 − 4K̃1K̃3ATRT

2K̃1

=⇒ (1 + k4)A =
2K̃1AT

2K̃1

−
K̃1AT + K̃3RT + K̃2(1 + k4)−

√
(K̃1AT + K̃3RT + K̃2(1 + k4))2 − 4K̃1K̃3ATRT

2K̃1

=⇒ A =
K̃1AT − K̃3RT − K̃2(1 + k4) +

√
(K̃1AT + K̃3RT + K̃2(1 + k4))2 − 4K̃1K̃3ATRT

2K̃1(1 + k4)
.

(S68)

6 Sensitivity of transcription-rate function decreases with increas-
ing k3 values

Additionally, we performed a comprehensive analysis of how the peak in sensitivity varies with
respect to k3. Previous studies illustrated that a higher sensitivity increases the likelihood of
oscillations [14]. We saw for individual parameter sets, for which System (N) exhibited oscillations,
that the magnitude of the peak sensitivity decreases as k3 increases (Figure S4A). Thus, we further
investigated whether this is true in general. In particular, for 1000 randomly generated parameter
sets for which System (N) exhibited oscillations, we calculate the magnitude of the peak sensitivity
first at the k3 value of the parameter set. Then, we vary k3 values (x-axis, Figure S4B) and report
that variation as percent change from the original k3 value of the parameter set. Next, we compute
the magnitudes of the peak sensitivity for the varied k3 values and report those as percent variation
from the original magnitude (y-axis, Figure S4B). Thus, at 100%, which is the original k3 value,
the magnitude should be 100%, i.e., equal to the original amount. As k3 increases relative to the
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Figure S4: The robustness of oscillations decreases as the rate of dissocation in-
creases.(A) The sensitivity of the transcription-rate function of System (N) with one parameter
set for which the system exhibited oscillations. We vary the k3 value to represent an increase in the
dissociation rate of phosphorylated repressors. As k3 increases (more green), the magnitude of the
peak sensitivity decreases, i.e., the robustness of oscillations decreases. (B) We randomly generated
1000 parameter sets for which the Neurospora system exhibits oscillations. For each parameter set,
we vary the k3 value relative to the original k3 value of the parameter set (x-axis records the per-
cent variation). Then, we plot the variation in the magnitude of the peak sensitivity. We compute
this variation for each parameter set and plot the mean change. As k3 increases relative to the
original value, the magnitude of the peak sensitivity decreases, indicating that faster dissociation
of phosphorylated repressor and activator decreases the robustness of the oscillations.

original k3 value, the magnitude in the peak sensitivity decreases relative to the original magnitude
(Figure S4B). Similarly, when the k3 value is higher than the original value, the magnitude is
also higher than the original amount (Figure S4B). Thus, in general, as the rate of dissociation
increases, the magnitude of the peak sensitivity decreases. Therefore, increasing the dissociation
rate of the phosphorylated repressor and activator decreases the robustness of the oscillations. This
phenomenon may explain why CRY1 binds with BMAL1/CLOCK on DNA independently of PER
in the early morning [41].
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